

Modeling amidst the Microtheories

Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University
2133 Sheridan Road, Evanston, IL, 60201, USA

forbus@northwestern.edu

Abstract
Integrating qualitative reasoning with large-scale knowledge
bases provides new challenges. This paper outlines work in
progress on developing a new model formulation system to
support qualitative reasoning via compositional modeling
that can operate in an environment with over a million
available facts. Three ideas are discussed: Exploiting
microtheories for modeling, using non-monotonic inference,
and speculative inference. An implemented algorithm
which runs on QP benchmark examples is outlined, and
planned extensions are discussed.

 Introduction
Most qualitative reasoning systems have been built as
stand-alone pieces of software, as systems or modules
which assume a specialized input language for models
and/or domain theories. Today, the existence of large-
scale knowledge bases such as OpenCyc, and the potential
for building even larger knowledge bases via the Semantic
Web, provide a new set of opportunities and challenges for
qualitative reasoning. The opportunities include the
ability to explore more directly how qualitative reasoning
can be used in common sense reasoning. Common sense
reasoning, after all, involves tying qualitative reasoning
into the wide expanse of everyday knowledge of kitchens,
swimming pools, parking lots, and cactus. The challenges
include the need to keep model formulation tractable in the
face of millions of potentially relevant facts. Reasoning
techniques which have commonly been used in the past,
such as using an ATMS (Falkenhainer & Forbus, 1991) or
assuming that the structure of domain theories is highly
constrained (Nayak, 1994), do not seem likely to scale.

This paper describes work in progress on a new model
formulation algorithm that is implemented as a service
within the context of a reasoning system that uses a large-
scale knowledge base. First the relevant properties of the
knowledge base, reasoning system, and compositional
modeling are reviewed. Next the key ideas of the approach
are laid out, illustrated by examples. Finally, future work
is discussed.

Background
Large-scale knowledge bases. We use the Cyc ontology1
and KB contents in our research, augmented by an
ontology for QP theory (Forbus, 1984) and support for
analogical reasoning. Concepts are modeled in the KB as
collections, which are linked into a hierarchy by the
genls relation. The OpenCyc KB contents we are using,
for example, include over 58,000 collections. A large
number of predicates are defined (>14,000), whose
argument signatures are specified in terms of these
collections. These concepts include many concepts that
are directly relevant to traditional qualitative models (e.g.,
substances, types of quantities) as well as many more
concepts which are not obviously relevant (e.g., comic
book characters, social relationships, mental states). Thus
it provides a good example of an off-the-shelf knowledge
resource which can be harnessed for qualitative reasoning.

The contents of the knowledge base are partitioned into
microtheories. Microtheories provide a way of dealing
with context. For example, people are quite capable of
answering questions and making predictions about the
fictional worlds of TV series and novels, while at the same
time knowing that they do not exist. Microtheories provide
a means of dealing with such inconsistent contexts (e.g.,
the MiddleEarthMt and TeletubbiesMt
microtheories in OpenCyc). Every fact is in at least one
microtheory. Microtheories themselves are related by
genlMt, i.e., (genlMt AMt BMt) indicates that every
fact believed in BMt is available in AMt. genlMt
statements themselves are global, i.e. believed in every
microtheory.

The logical environment of any operation consists of the
microtheory it occurs in plus the set of microtheories that
can be reached from it via genlMt relationships. This can
provide considerable filtering: For example, the logical

1 http://research.cyc.com

mailto:forbus@northwestern.edu
http://research.cyc.com
jenn
Typewritten Text

jenn
Typewritten Text
Forbus, K. (2010). Modeling Amidst the Microtheories. J. de Kleer and K. D. Forbus (Eds.), Proceedings of the 24th International Workshop on Qualitative Reasoning (112-115). Portland, OR.

jenn
Typewritten Text

environment used in the experiments describe here
includes only 640,452 facts out of the 1,722,715 facts
currently available in the knowledge base.

Reasoning system. While we use the contents of
OpenCyc or ResearchCyc, depending on the project, we
use our own reasoning engine instead of Cycorp’s. There
are a variety of reasons for this: Ours is optimized for our
purposes, and we have full source code access, for
example. Our FIRE reasoning system implements the
knowledge base via a persistent-object database2. The KB
includes a form of TMS that enables efficient pattern
matching retrieval while respecting logical environments.
The working memory uses a logic-based TMS for
propositional reasoning. FIRE has five primary reasoning
mechanisms, but for our purposes only two are relevant:
Ask provides access to the knowledge base and performs
“simple” inferences, using procedural attachments to
predicates to implement specialized computations. Query
performs backchaining, using Horn clause axioms selected
from the KB based on the current logical environment.
Thus the logical environment of a computation can be used
to filter both the available data and the available rules to
operate over this data.

Compositional Modeling. Knowledge about a domain

is encoded in model fragments, which are logically
quantified pieces of knowledge – think of frames or
schemas – which are instantiated in the process of building
models to reason about a specific scenario. Assembling a
model from fragments is typically constrained by a task,
often consisting of a quantity and some form of query
about it. A domain theory consists of a set of model
fragments, and often includes assumption classes.
Assumption classes provide a mutually exclusive and
collectively exhaustive set of choices for how to model
something, when certain relevance conditions hold.

2 Franz, Inc.’s Allegrocache database.

Domain theories can consist of models at multiple levels of
granularity and multiple, mutually inconsistent
perspectives, if they rely on assumption classes to keep
incoherent models from being constructed. Consequently,
assembling a model given a scenario and a task is
potentially quite complicated.

Microtheories and Modeling
Microtheories make both building compositional domain
theories and performing model formulation easier in some
ways. Domain theories can be stored in microtheories, or
as a whole graph of microtheories, potentially
decomposing them into modules that could be combined to
create logical environments that contained all and only the
knowledge needed for particular tasks. Scenario
descriptions can be stored as microtheories as well, along
with models built from them for particular purposes.
Figure 1 illustrates.

The reasoning for model formulation is conducted in the
logical environment of microtheory which will contain that
model (e.g., Model1Mt). In the example of Figure 1, all
of the model fragments and knowledge available from
DomainTheoryMt, ScenarioMt, and Asns1Mt will
be accessible in creating the model in Model1Mt. The
alternate model being built in Model2Mt will be using
most of the same knowledge, but the assumptions in
Asns2Mt instead of Asns1Mt.

This scheme makes it straightforward to compute and
compare multiple models for the same scenario without
interference. However, there are subtleties. The point of
using a large-scale knowledge base is to have access to a
lot of knowledge, so domain theory microtheories typically
will inherit from other microtheories to supply background
knowledge. Consider this model fragment, from a
benchmark QP domain theory:

ContainedStuffPossibility:
 Participants:
 containerOf: ?can, Container
 phaseOf: ?phase, MatterTypeByPhysicalState
 substanceOf:?sub,
 ChemicalCompoundTypeByChemicalSpecies
 Constraints: None.
 Conditions:
 (canContainSubstance ?can ?phase ?sub)
 Consequences:
 (hasQuantity ?self
 (AmountOfFn ?sub ?phase ?can))
 (qpGreaterOrEqualTo
 (AmountOfFn ?sub ?phase ?can) Zero)

The OpenCyc KB has six types of matter (solid, liquid,
gas, plasma, Fermonic and Bose/Einstein condensate) and
knows about 590 chemical compounds. Thus for every
instance of a container in a scenario, unless more careful
control is exerted, there will be 3,540 model fragments of
this type instantiated. Reorganizing the microtheory

Figure 1: Microtheory scheme for model formulation
Two distinct models (Model1Mt, Model2Mt) are based
on the same domain theory and scenario, but different
modeling assumptions (Asns1Mt, Asns2Mt). The
arrows indicate genlMt statements.

Model1Mt

DomainTheoryMt

ScenarioMt

Model2Mt

Asns1Mt

Asns2Mt

jenn
Typewritten Text

contents is not a practical solution even in a curated
knowledge base: There are 2,836 non-trivial microtheories
in OpenCyc, for instance. Moreover, the point of the
Semantic Web is to dynamically exploit existing resources
from multiple sources, which makes reorganization
impossible. Model formulation algorithms themselves
must provide ways to stay focused.

Our solution to this problem is to expand the idea of
consider assumptions from compositional modeling to
include a new predicate, considerEntity, a unary
predicate indicating that its argument represents an entity
that should be included in the model under construction.
The set of considerEntity assertions derivable within a
logical environment thus determines what entities will be
allowed into the model. As will be seen shortly,
considerEntity statements are never introduced
directly by modelers. Instead, they are inferred from a
lower-level statement, in order to support non-monotonic
reasoning.

Non-monotonic reasoning
Sometimes modeling knowledge concerns what should be
ignored (e.g., evaporation while drinking coffee) rather
than what should be considered. This needs to be handled
at the level of entities, model fragments, and particular
instances of model fragments. We discuss each in turn.

Suppressing entities. Scenarios sometimes contain
entities that are irrelevant for a particular analysis, so there
must be some means for suppressing the consideration of
entities. The unary predicate ignoreEntity indicates that
its argument represents an entity that must not be included
in a model. It is a contradiction for considerEntity and
ignoreEntity to be true of the same entity within a logical
environment. Consequently, the derivation of
considerEntity rests on a more primitive statement,
includeEntity, and a non-monotonic derivation as
follows:

(<== (considerEntity ?e)
 (includeEntity ?e)
 (uninferredSentence (ignoreEntity ?e)))

In FIRE, the predicate uninferredSentence is true only if
its argument cannot be derived within the current logical
environment. Thus logical contradictions are avoided, and
default inclusion can be overridden by an inference that
something should be ignored.

Suppressing model fragments. In cases where an
entire type of phenomena should be ignored (e.g. ignoring
thermal properties means suppressing heat flow and other
processes that involve heat and temperature), the unary
predicates considerMF and ignoreMF are defined and used
analogously to considerEntity and ignoreEntity, with
ignoreMF trumping considerMF. Such queries are used

during model formulation when deriving the list of model
fragments to look for.

Suppressing model fragment instances. Sometimes

even finer-grained control is needed in building a model.
For example, when considering where smoke goes if we
burn something while cooking, we may need to include the
air in the room in our model, but at the same time we may
want to ignore transfers of heat to the air, while
considering transfers of heat from the burners of the stove
to the pots and pans on them. The binary predicates
considerMFInstance and ignoreMFInstance provide this
level of control. The first argument is a model fragment
type (e.g. HeatFlowProcess), and the second argument is a
binding list of participants for a proposed instance of that
process. As with the other non-montonic predicates,
ignoring trumps considering:

(<== (considerMFInstance ?mft ?bindings)
 (uninferredSentence
 (ignoreMFInstance ?mft ?bindings))

(<== (ignoreMFInstance ?mf ?given-bindings)
 (ignoreMFInstance ?mf ?other-bindings)
 (subsetOfBindings ?other-bindings
 ?given-bindings))

Notice that the second rule allows concise constraints like
“ignore heat flow to the atmosphere” to be expressed, since
only the binding of the destination of heat flow to the
atmosphere needs to be included. The test for
considerMFInstance is used as the last step just
before a model fragment instance is created, so that there is
the most information available upon which to base the
decision. As with the other consider/ignore pairs, this
pattern enables the declarative specification of rules for
ignoring phenomena, but here, the properties of the
proposed binding list can be used to rule out instances
involving specific entities.

Speculative Inference
QR systems have tended to treat model formulation as a
distinct phase of reasoning from deriving conclusions with
a model, because most qualitative reasoning requires
closed-world assumptions about the relevant phenomena in
order to construct the appropriate network of constraints.
For example, boiling is only possible when a contained
liquid is present. To determine whether boiling might
occur in a pot requires determining that water could be in
that pot. Thus all of the model fragments that will go into a
model, whether or not they hold in the initial state(s), must
be derived up front. In Gizmo and QPE, two
implementations of QP theory, this was done by antecedent
rules which triggered on facts simply being in the database,
whether or not they were believed. This is essentially a
form of speculative inference, where mentioning a fact is
used as a heuristic that it might become true. This solution

does not scale well because such antecedent rules have
indefinite temporal extent, which means they will continue
to clog memory even when they are no longer relevant.
Consequently, we have developed a different approach.

For every microtheory M representing a model under
construction, a new microtheory is defined:

(ModelFormulationScratchpadMtFn M)

This microtheory has M as its sole genlMt, and is used as
a scratchpad by asserting as true every potential
consequence and condition of every model fragment
instance that gets created. For example, if mf-0 is an
instance of ContainedStuffPossibility, then the
appropriate hasQuantity, qpGreaterThanOrEqualTo, and
canContainSubstance statements will be believed to be
true in the scratchpad. Given that processes often come in
opponent pairs, this scratchpad will quickly become
contradictory. That doesn’t matter, since FIRE does not
aggressively seek out contradictions by default – a choice
made because of the inefficiency of complete reasoning.
This gives us exactly the kind of speculative reasoning we
want: By using this scratchpad for model formulation
queries, we will get answers based on the possibility of
propositions being true. In general this will lead to over-
generation, because combinations of facts believed in the
scratchpad may be mutually incompatible in any consistent
logical environment. This is a relatively small price to pay,
given the alternative of having to reconsider possible new
model fragments after essentially every reasoning step.

Algorithm
We have combined these ideas to create a model
formulation algorithm for QP models that can operate over
large-scale knowledge bases. The basic model formulation
algorithm is:
1. Gather relevant model fragment types, by querying for

considerMF.
2. Sort model fragment types according to dependency

a. If MFa introduces a statement that unifies with
a participant constraint of MFb, then MFb
depends on MFa, and so instances of MFa
should be sought before instances of MFb.

3. For each relevant model fragment type, find instances by
a. Find participants by searching for relevant

entities (i.e., those that satisfy
considerEntity) which satisfy the
participant constraints, using speculative
inference.

b. Query for considerMFInstance. If not true,
ignore this instance.

c. Otherwise, instantiate the model fragment
instance, asserting appropriate logic in the
model microtheory, and asserting as true the
consequences, conditions, and participant
constraints in the scratchpad microtheory.

The dependency sort in Step 2 is an optimization made
possible by speculative inference. Again, it can
overgenerate, but no more so than prior antecedent-rule
implementations. Experience with prior implementations
indicates that this is typically a small price to pay.

At present the basic algorithm described above has been
implemented, and operates correctly on the standard
benchmark examples for QP theory implementations. We
are planning to use it to replace the application-specific
model formulation algorithms that we have used in our
Companion experiments (Forbus, Klenk, & Hinrichs,
2009) and with CogSketch (Wetzel & Forbus, 2009).

Discussion
Integrating qualitative reasoning into large-scale
knowledge-based systems provides interesting new
challenges. For example, as we have seen, model
formulation must be very carefully controlled to maintain
focus. Such systems also provide new opportunities via
new resources, including support for microtheories to
provide a notion of logical environment and non-
monotonic reasoning to support default reasoning with
overrides. These facilities combined with using
microtheories to make a scratchpad for the kind of
speculative inference needed in model formulation,
provide a robust foundation for a simple and elegant model
formulation algorithm.

While the basic algorithm above is already sufficient for
supporting our recent and current projects, it does not
capture most of the more sophisticated model formulation
ideas explored in the 1990s. Those ideas were, in some
sense, ahead of their time, since they presumed efforts to
build large-scale domain theories. With the widespread
availability of OpenCyc and the rise of the Semantic Web,
it is time to revisit those ideas and rework them to fit our
new knowledge-rich environment. This paper represents
the first step in that process.

There are several directions to explore next. First, we plan
to add support for assumption classes, to allow reasoning
with multiple perspective and multiple granularity domain
theories. We suspect that the criteria for evaluating model
quality used previously were somewhat oversimplified,
since they were one-dimensional (fewest assumptions
(Falkenhainer & Forbus 1991), lowest cost assumptions
(Nayak 1994), single direct influence (Rickel & Porter,
1997). Types of available data, desired form of answers,
reasoning cost, and explanatory clarity all seem like
relevant factors, whose relative importance will vary with
task. The more extensive ontologies in large knowledge-
based systems provide potentially useful infrastructure for
this. Accumulating and reusing modeling assumptions
from experience (Falkenhainer, 1992; Klenk et al 2008)
provides another source of reasoning we plan to

incorporate. To given these ideas a more complete test, we
are planning to rebuild the large-scale steam plant model
(Falkenhainer & Forbus, 1991) to test reasoning with
assumption classes, and to extend the reasoning to include
time-scale abstraction (Rickel & Porter, 1997), using a port
of their Botany Knowledge Base for testing.

Acknowledgements
This work is supported by the Intelligent and Autnomous
Systems Program and the Cognitive Science Program of
the Office of Naval Research.

References
Falkenhainer, B. 1992. Modeling without amnesia:

Making experience-sanctioned approximations.
Proceedings of QR02

Falkenhainer, B. and Forbus, K. 1991. Compositional
modeling: finding the right model for the job. Artificial
Intelligence 51:95–143.

Forbus, K. 1984. Qualitative Process Theory Artificial
Intelligence (24)85-168

Forbus, K., Klenk, M., and Hinrichs, T. , 2009.
Companion Cognitive Systems: Design Goals and Lessons
Learned So Far. IEEE Intelligent Systems, vol. 24, no. 4,
pp. 36-46, July/August

Klenk, M., Friedman, S, & Forbus, K. 2008. Learning
Modeling Abstractions via Generalization. Proceedings of
QR08.

Nayak, P. 1994. Causal approximations. Artificial
Intelligence 70:277–334.

Rickel, J. and Porter, B. 1997. Automated modeling of
complex systems to answer prediction questions. Artificial
Intelligence 93:201-260.

Wetzel, J. and Forbus, K. (July 2009) Automated
Critique of Sketched Mechanisms. Proceedings of
IAAI09.

